skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keeton, Kimberly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present Dinomo, a novel key-value store for disaggregated persistent memory (DPM). Dinomo is the first key-value store for DPM that simultaneously achieves high common-case performance, scalability, and lightweight online reconfiguration. We observe that previously proposed key-value stores for DPM had architectural limitations that prevent them from achieving all three goals simultaneously. Dinomo uses a novel combination of techniques such as ownership partitioning, disaggregated adaptive caching, selective replication, and lock-free and log-free indexing to achieve these goals. Compared to a state-of-the-art DPM key-value store, Dinomo achieves at least 3.8× better throughput at scale on various workloads and higher scalability, while providing fast reconfiguration. 
    more » « less
  2. null (Ed.)
  3. We present the Succinct Range Filter (SuRF), a fast and compact data structure for approximate membership tests. Unlike traditional Bloom filters, SuRF supports both single-key lookups and common range queries: open-range queries, closed-range queries, and range counts. SuRF is based on a new data structure called the Fast Succinct Trie (FST) that matches the point and range query performance of state-of-the-art order-preserving indexes, while consuming only 10 bits per trie node. The false positive rates in SuRF for both point and range queries are tunable to satisfy different application needs. We evaluate SuRF in RocksDB as a replacement for its Bloom filters to reduce I/O by filtering requests before they access on-disk data structures. Our experiments on a 100 GB dataset show that replacing RocksDB's Bloom filters with SuRFs speeds up open-seek (without upper-bound) and closed-seek (with upper-bound) queries by up to 1.5× and 5× with a modest cost on the worst-case (all-missing) point query throughput due to slightly higher false positive rate. 
    more » « less